

Please write clearly in	n block capitals.
Centre number	Candidate number
Surname	
Forename(s)	·
Candidate signature	I declare this is my own work.

GCSE CHEMISTRY

F

Foundation Tier Paper 1

Monday 22 May 2023 Morning Time allowed: 1 hour 45 minutes

Materials

For this paper you must have:

- a ruler
- a scientific calculator
- the periodic table (enclosed).

Instructions

- Use black ink or black ball-point pen.
- · Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do all rough work in this book. Cross through any work you do not want to be marked.
- In all calculations, show clearly how you work out your answer.

Information

- The maximum mark for this paper is 100.
- The marks for questions are shown in brackets.
- You are expected to use a calculator where appropriate.
- You are reminded of the need for good English and clear presentation in your answers.

For Exam	iner's Use
Question	Mark
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
TOTAL	

0 1	This question is about atoms.	Do not write outside the box
	Atoms contain three types of particle:	
	• electrons	
	• neutrons	
	• protons.	
0 1.1	Which particle has no electrical charge? [1 mark]	
	Tick (✓) one box.	
	Electron	
	Neutron	
	Proton	
0 1.2	Which particles have the same relative mass? Tick (✓) one box. [1 mark]	
	An electron and a neutron	
	An electron and a proton	
	A neutron and a proton	
0 1.3	The formula of a compound is N_2O How many of each type of atom are in one molecule of N_2O ?	
	[2 marks]	
	Nitrogen	
	Oxygen	

box

An atom of element **Z** contains:

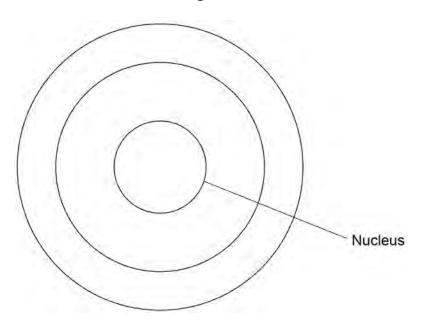
- 3 electrons
- 4 neutrons
- 3 protons.
- 0 1.4 Give the name of element Z.

Use the periodic table.

[1 mark]

0 1. 5 Complete Figure 1 to show the position of the particles in an atom of element Z.

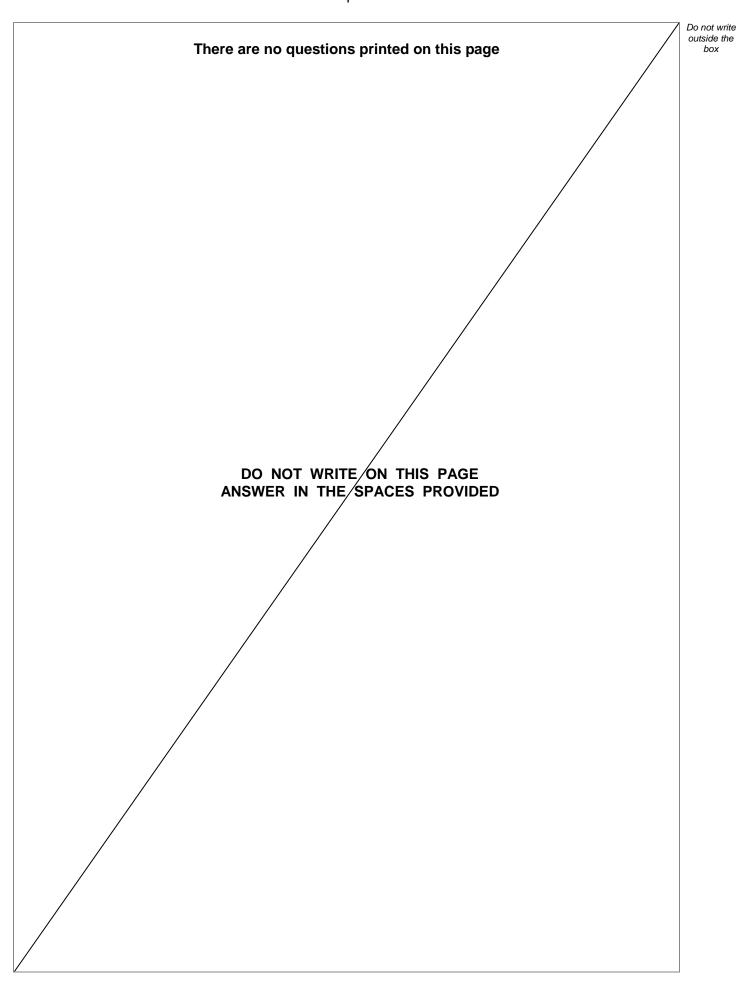
Use the symbols:


 \times = electron

= neutron

O = proton

[4 marks]


Figure 1

Turn over for the next question

Turn over ▶

5

0 2	This question is about acids and alkalis.	Do not write outside the box
0 2.1	Acids and alkalis are substances that produce ions in aqueous solution. Draw one line from each substance to the ion always produced by that substance in aqueous solution.	
	[2 marks] Substance lon always produced in aqueous solution	
	CI ⁻	
	Acid H ⁺	
	Na ⁺	
	Alkali OH ⁻	
	SO ₄ ²⁻	
0 2.2	What type of aqueous solution has a pH of 11? Tick (✓) one box. [1 mark]	
	Acidic	
	Alkaline	
	Neutral	
	Question 2 continues on the next page	

	A student determined the reacting sodium hydroxide solution by titrati	
	This is the method used.	
	1. Measure 25.0 cm ³ of the sodium	hydroxide solution.
	2. Add the sodium hydroxide solution	on to a conical flask.
	3. Add 3 drops of indicator to the se	odium hydroxide solution.
	4. Add the hydrochloric acid drop b	y drop until the indicator changes colour.
	5. Record the volume of the hydrod	chloric acid added.
	6. Repeat steps 1 to 5 three more t	imes.
0 2.3	Which piece of equipment should the sodium hydroxide solution in st	
	Tick (✓) one box.	
	Beaker	
	Pipette	
	Ruler	
0 2.4	Which piece of equipment should be step 4?	be used to add the hydrochloric acid drop by drop in
	Tick (✓) one box.	[1 mark]
	Balance	
	Burette	
	Measuring cylinder	

box

Table 1 shows the results.

Table 1

Trial	1	2	3	4
Volume of hydrochloric acid added in cm ³	24.3	24.5	28.1	24.4

0 2 . 5	Which is the anomalous result in Table 1 ?

[1 mark]

Trial 1	Trial 2	Trial 3	Trial 4	
---------	---------	---------	---------	--

0 2.	6	Suggest one reason for the anomalous result in Table 1.
------	---	---

[1 mark]

0 2 . 7 The student used a solution of sodium hydroxide of concentration 4.00 g/dm³.

Calculate the mass of sodium hydroxide in 25.0 cm³ of this solution.

 $1 \text{ dm}^3 = 1000 \text{ cm}^3$

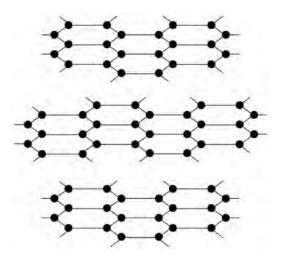
[3 marks]

Mass = _____

10

0 3	This question is about earbon	Do not write outside the box
	This question is about carbon.	DOX
0 3 . 1	Which type of substance is carbon? [1 mark]	
	Tick (✓) one box.	
	Compound	
	Element	
	Mixture	
0 3.2	Carbon has isotopes with mass numbers 12, 13 and 14.	
	Complete the sentences.	
	Choose answers from the box.	
	[2 marks]	
	electrons ions molecules neutrons protons	
	The isotopes of carbon have the same number of	
	The isotopes of carbon have a different number of	

0 3.3	12 g of carbon contains 6.02 ×10 ²³ atoms.		Do not write outside the box
	Which expression is used to calculate the mass of one atom of carbon? Tick (✓) one box.	[1 mark]	
	$\frac{12}{6.02 \times 10^{23}}$		
	$\frac{6.02 \times 10^{23}}{12}$		
	$12 \times 6.02 \times 10^{23}$		
0 3.4	Figure 2 shows diagrams that represent different forms of carbon. Figure 2		
	A В С		
	Which diagram in Figure 2 represents Buckminsterfullerene? Tick (✓) one box.	[1 mark]	
	A B C		
	Question 3 continues on the next page		



0 3.5

Figure 3 represents part of the structure of graphite.

Do not write outside the box

Draw **one** line from each property of graphite to the structural feature that is the reason for that property.

[2 marks]

Property

Structural feature

Graphite has hexagonal rings of carbon atoms.

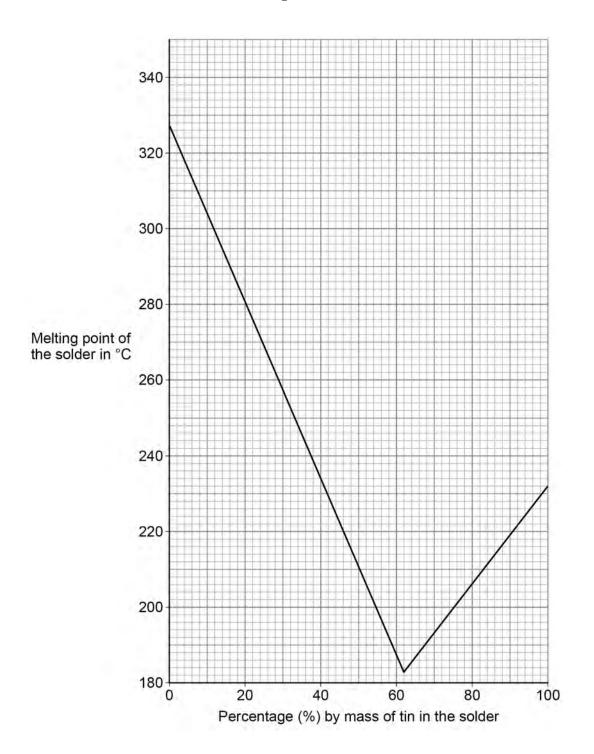
Graphite conducts electricity.

The bonds between carbon atoms in the layers are strong.

Graphite is soft.

There are no covalent bonds between layers of atoms.

There are delocalised electrons in graphite.

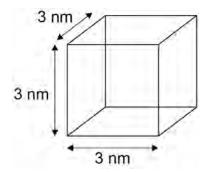

	This question is about alloys.	Do not v outside box
	Solders are alloys of tin and lead.	
	Different solders have different percentages of tin and lead.	
	Figure 4 shows the arrangement of atoms in pure tin and in a solder.	
	Figure 4	
	Key Tin atom Lead atom	
	Pure tin Solder	
	[3 marks]	-
	Percentage of lead atoms =%	-
0 4 . 2	Percentage of lead atoms =% Explain why solder is harder than pure tin.	
0 4 . 2		
0 4.2	Explain why solder is harder than pure tin.	
0 4.2	Explain why solder is harder than pure tin. Complete the sentences. Use Figure 4 .	
0 4.2	Explain why solder is harder than pure tin. Complete the sentences. Use Figure 4. [2 marks]	

Do not write outside the box

Figure 5 shows how the melting point of the solder changes with the percentage by mass of tin in the solder.

Figure 5

0 4.3	Describe what happens to the melting point of the solder as the percentage of tin increases.	by mass	outside the box
	Use data from Figure 5.	[3 marks]	
0 4.4	What is the melting point of pure tin?		
	Use Figure 5 .	[1 mark]	
	Melting point of pure tin =	°C	
0 4.5	What happens to the atoms in pure tin as the tin melts? Tick (✓) one box.	[1 mark]	
	The atoms gain energy and their arrangement becomes less ordered.		
	The atoms gain energy and their arrangement becomes more ordered.		
	The atoms lose energy and their arrangement becomes less ordered.		
	The atoms lose energy and their arrangement becomes more ordered.		10



0 5	This question is about small particles.	Do not write outside the box
0 5.1	Which type of particle is often referred to as dust? Tick (✓) one box. Coarse particle Fine particle Nanoparticle	
0 5.2	A spherical coarse particle has a diameter of 4000 nm. A spherical fine particle has a diameter of 200 nm. How many times larger is the diameter of the coarse particle than the diameter of the fine particle?	
	fine particle? [1 mark] Tick (✓) one box.	
	2 times	
	5 times	
	20 times	
	50 times	

0 5.3 Figure 6 represents a cubic nanoparticle.

Figure 6

The volume of the cubic nanoparticle is 27 nm³.

Calculate:

- the surface area of the cubic nanoparticle
- the simplest whole number ratio of surface area : volume for the cubic nanoparticle.

Use the equation:

surface area of cubic nanoparticle = 6 x surface area of one face

	[4 marks]
Surface area of cubic nanoparticle =	nm²
Simplest whole number ratio of surface area : volume =	:1

Question 5 continues on the next page

Titanium oxide is used in some sun creams.	Do not write outside the box
Which is an advantage of using nanoparticles of titanium oxide rather than normal-sized particles of titanium oxide in sun creams? [1 mark] Tick (✓) one box.	
A smaller mass of nanoparticles is needed to be effective. Nanoparticles cost more than the same mass of normal-sized particles. Nanoparticles have a lower surface area to volume ratio than normal-sized particles.	
Titanium oxide contains Ti^{4+} ions and O^{2-} ions. What is the formula of titanium oxide? Tick (\checkmark) one box. $TiO_2 $	8
	Which is an advantage of using nanoparticles of titanium oxide rather than normal-sized particles of titanium oxide in sun creams? [1 mark] Tick (*\forall) one box. A smaller mass of nanoparticles is needed to be effective. Nanoparticles cost more than the same mass of normal-sized particles. Nanoparticles have a lower surface area to volume ratio than normal-sized particles. Titanium oxide contains Ti ⁴⁺ ions and O ²⁻ ions. What is the formula of titanium oxide? [1 mark] Tick (*\forall) one box.

0 6	This question is about metals.	Do not outside box
0 6.1	Platinum is used to make jewellery. Suggest one reason why platinum is used to make jewellery. [1 mark]	
0 6.2	Figure 7 shows a piece of sodium being added to water. Figure 7	
	Sodium Sodium Water	
	Give two observations that could be seen when sodium is added to water. [2 marks]	
	2	
	Question 6 continues on the next page	

		Do not write
0 6.3	Copper is a transition element.	outside the box
	Sodium is a Group 1 element.	
	What are two differences between copper and sodium? [2 marks]	
	Tick (✓) two boxes.	
	Copper has a lower melting point.	
	Copper is harder.	
	Copper is less dense.	
	Copper is less reactive.	
	Copper is less strong.	

0 6 . 4

The metals aluminium and copper can be used to make pans for cooking.

Table 2 shows information about the two metals.

The higher the value for thermal conductivity, the better the metal conducts thermal energy.

Table 2

	Aluminium	Copper
Thermal conductivity in arbitrary units	250	400
Density in g/cm³	2.7	8.9
Cost of metal per kg in £	1.50	7.00

Evaluate the use of pans made of aluminium and of copper.

Use Table 2 .	[4 marks]

0	7	This question is a	about ionic compounds and elec	ctrolysis.
		Sodium chloride	is an ionic compound.	
C	7.1	Figure 8 represe	nts part of the structure of solid	sodium chloride.
			Figure 8	
			11 2 2 3	Na ⁺ ion Cl [−] ion
		Complete Figure	· 8.	[2 marks]
0	7.2	Give one reason	why molten sodium chloride co	nducts electricity.
		Refer to ions in y	our answer.	[1 mark]
0	7.3	Table 3 shows po	roducts of the electrolysis of two	molten ionic compounds. [2 marks]
			Table 3	
	Molten compound		Product at the negative electrode	Product at the positive electrode
	Magnesiu	ım bromide	Magnesium	

Potassium chloride

Chlorine

0 7.4	Aluminium is extracted by electrolysis.	Do not write outside the box
	The electrolyte is a molten mixture of aluminium oxide and cryolite.	
	Why is a mixture used instead of pure aluminium oxide as the electrolyte? [1 mark] Tick (✓) one box.	
	The mixture has a lower melting point than pure aluminium oxide.	
	The mixture has the same melting point as pure aluminium oxide.	
	The mixture has a higher melting point than pure aluminium oxide.	
0 7.5	Electrolysis of an aqueous solution of sodium sulfate produces hydrogen and oxygen.	
	What is the source of the hydrogen and the oxygen produced during the electrolysis of aqueous sodium sulfate solution?	
	[1 mark] Tick (✓) one box.	
	Air	
	Sulfate ions	
	Water	
	Question 7 continues on the next page	

- ---

0 7 . 6	Why is hydrogen produced instead of sodium in the electrolysis of aqueous sodium sulfate solution? Tick (✓) one box.	[1 mark]
	Hydrogen is less reactive than sodium.	
	Hydrogen has the same reactivity as sodium.	
	Hydrogen is more reactive than sodium.	
7.7	Figure 9 shows the relationship between the volume of hydrogen and the volume of oxygen produced during the electrolysis. Figure 9 Volume of oxygen produced in cm ³ Volume of hydrogen produced in cm ³ Give one conclusion that can be made about the volume of hydrogen produced to the volume of oxygen produced.	duced
	compared to the volume of oxygen produced.	[1 mark]

	Question 8 continues on the next page	
	<i>M</i> _r =	
	Relative atomic masses (A_r): $O = 16$ Fe = 56	[2 marks]
08.3	Calculate the relative formula mass ($M_{\rm f}$) of Fe ₂ O ₃	
	How does the equation show that iron oxide is reduced?	[1 mark]
0 8.2	Iron oxide is reduced in this reaction.	
	$Fe_2O_3 + 3C \rightarrow \underline{\hspace{1cm}} Fe + \underline{\hspace{1cm}} CO$	
0 8.1	Balance the equation for the reaction.	[2 marks]
	Iron is extracted from iron oxide by a displacement reaction with carbon.	
0 8	This question is about displacement reactions.	

	- ·	
0 8.4	Copper oxide reacts with hydrogen to produce copper. The equation for the reaction is:	
	$CuO \ + \ H_2 \ \rightarrow \ Cu \ + \ H_2O$	
	Calculate the percentage atom economy for obtaining copper from this react	ion.
	Use the equation: Percentage atom economy = $\frac{A_r \text{ of Cu}}{M_r \text{ of H}_2 + M_r \text{ of CuO}} \times 100$	
	Relative atomic mass (A_r): Cu = 63.5 Relative formula masses (M_r): H ₂ = 2 CuO = 79.5	[2 marks]
	Percentage atom economy =	%
	A student investigated the reactivity of four different metals, A , B , C and D . The student:	
	 added each metal to aqueous solutions of each of the metal sulfates observed whether a reaction took place. 	
0 8.5	Give one observation that would show a reaction took place.	[1 mark]

box

0 8 . 6 Table 4 shows the results.

Table 4

	Metal sulfate solution			
Metal	A sulfate	B sulfate	C sulfate	D sulfate
Α	×	×	✓	×
В	✓	×	✓	×
С	×	×	×	×
D	✓	✓	✓	×

√ shows that a displacement reaction took place.

x shows that a displacement reaction did not take place.

Write metals A, B, C and D in order of reactivity.

Give a reason for your order of reactivity.

[2 marks]

Most reactive _____

Least reactive

Reason

10

Turn over for the next question

0 9	Discoveries in chemistry led to a better understanding of atomic structure.	Do not write outside the box
0 9.1	Atoms were originally thought to be tiny spheres that could not be divided.	
	The plum pudding model of the atom was then developed.	
	Figure 10 represents the plum pudding model of the atom.	
	Figure 10	
	Describe the plum pudding model of the atom. [2 marks]	
0 9.2	Atoms contain electrons, neutrons and protons.	
	Write these three particles in order of their discovery. [1 mark]	
	Earliest	
	Latest	

		7 -
	Very few atoms of the element tennessine (Ts) have ever been identified.	Do not w outside t box
	The atomic number of tennessine is 117	
0 9 . 3	Predict the number of outer shell electrons in an atom of tennessine.	
	Give one reason for your answer.	
	Use the periodic table.	
	[2 marks]	
	Number of outer shell electrons	
	Reason	
0 9. 4	Tennessine was first identified by a small group of scientists in 2010.	
	Suggest one reason why tennessine was not accepted as a new element by other	
	Suggest one reason why tennessine was not accepted as a new element by other scientists until 2015. [1 mark]	
	Suggest one reason why tennessine was not accepted as a new element by other scientists until 2015. [1 mark]	
	scientists until 2015.	
	scientists until 2015. [1 mark]	
	scientists until 2015. [1 mark]	
	scientists until 2015. [1 mark]	

0 9 . 5 Ti

The discovery of isotopes explained why some relative atomic masses are not whole numbers.

Do not write outside the box

Element R has two isotopes.

Table 5 shows the mass numbers and percentage abundances of the isotopes of element **R**.

Table 5

Mass number	Percentage abundance (%)
6	7.6
7	92.4

Calculate the relative atomic mass (A_r) of element R.

Give your answer to 1 decimal place.

[3 marks]

Relative atomic mass (1 decimal place) = _____

Do not write outside the box Turn over for the next question DO NOT WRITE ON THIS PAGE ANSWER IN THE SPACES PROVIDED

Do not	write
outside	the
box	(

1 0 This question is about temperature changes.

A student investigated the change in temperature of a solution when different masses of ammonium nitrate were dissolved in water.

This is the method used.

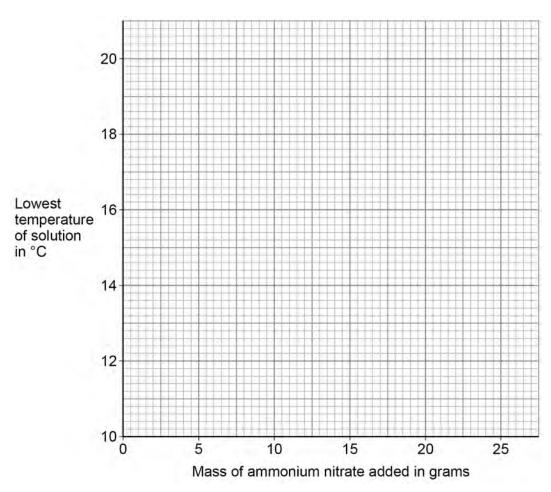
- 1. Measure 200 cm³ of water into a polystyrene cup.
- 2. Measure the temperature of the water.
- 3. Add 4.0 g of ammonium nitrate to the water.
- 4. Stir the solution until all the ammonium nitrate has dissolved.
- 5. Measure the lowest temperature reached by the solution.
- 6. Repeat steps 1 to 5 with different masses of ammonium nitrate.

1 0 . 1	Give the independent variable and the dependent variable in the investigation	on.
		[2 marks]
	Independent variable	
	Dependent variable	

Table 6 shows the results.

Table 6

Mass of ammonium nitrate added in grams	Lowest temperature of solution in °C
4.0	18.2
8.0	16.2
12.0	15.2
16.0	13.6
20.0	12.4
24.0	10.6


1 0.2 Plot the data from Table 6 on Figure 11.

Do not write outside the box

Draw a line of best fit.

[3 marks]

Figure 11

1 0. 3 Determine the initial temperature of the water.

You should extend your line of best fit on Figure 11.

[2 marks]

Initial temperature of the water = _____°C

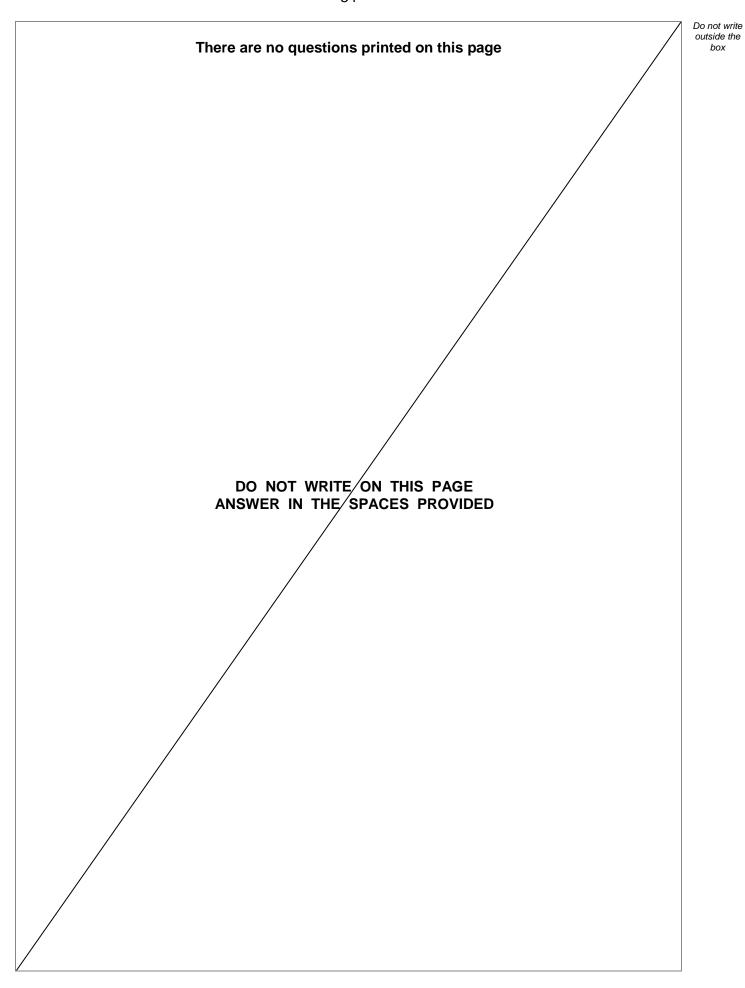
1 0 . 4 How do the results show that dissolving ammonium nitrate in water is endothermic? [1 mark]

The student repeated the experiment three more times.

Table 7 shows the results for 8.0 g of ammonium nitrate.

Table 7

	Trial 1	Trial 2	Trial 3	Trial 4	Mean
Lowest temperature of solution in °C	16.2	16.6	16.8	16.4	16.5


1 0 . 5	The student recorded the mean lowest temperature of the solution for 8.0 g of ammonium nitrate as 16.5 \pm 0.3 °C. Explain why the student included \pm 0.3 °C after the mean lowest temperature. [2 marks]
		_
1 0.6	What type of error is shown by the results in Table 7 ? Tick (✓) one box. Random error]
	Systematic error Zero error	

1 1	This question is about making a soluble salt.	Do not wi outside ti box
11.1	Plan a method to make pure, dry crystals of zinc chloride from zinc carbonate and a dilute acid.	
	[6 marks]	
1 1 . 2	Name two other substances that can each be reacted with a dilute acid to make zinc chloride.	
	Do not refer to zinc carbonate in your answer.	
	[2 marks]	
		8
	2	<u> </u>
	END OF QUESTIONS	

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.
	Copyright information
	For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after each live examination series and is available for free download from www.aqa.org.uk.
	Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.
	Copyright © 2023 AQA and its licensors. All rights reserved.

