Surname	Centre Number	Candidate Number
First name(s)		2

wjec cbac

GCE AS/A LEVEL

2420U10-1

WEDNESDAY, 18 MAY 2022 – MORNING

PHYSICS – AS unit 1 Motion, Energy and Matter

1 hour 30 minutes

For Examiner's use only			
Question	Maximum Mark	Mark Awarded	
1.	9		
2.	10		
3.	17		
4.	14		
5.	9		
6.	12		
7.	9		
Total	80		

ADDITIONAL MATERIALS

In addition to this paper you will require a calculator and a **Data Booklet**.

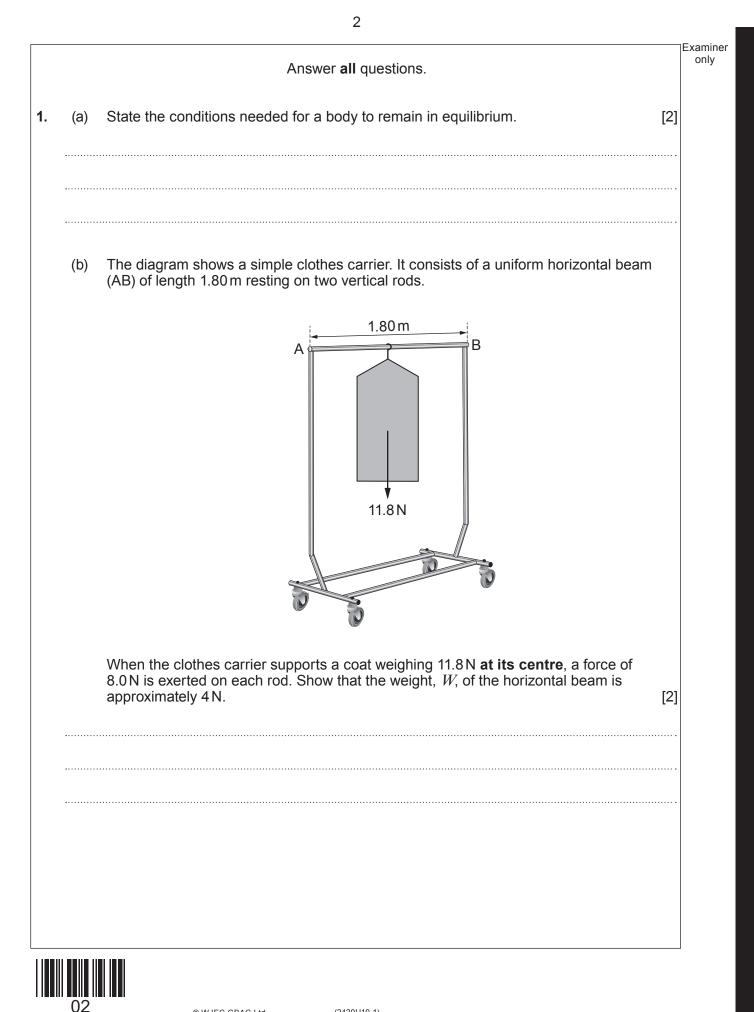
INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen. Do not use gel pen or correction fluid.

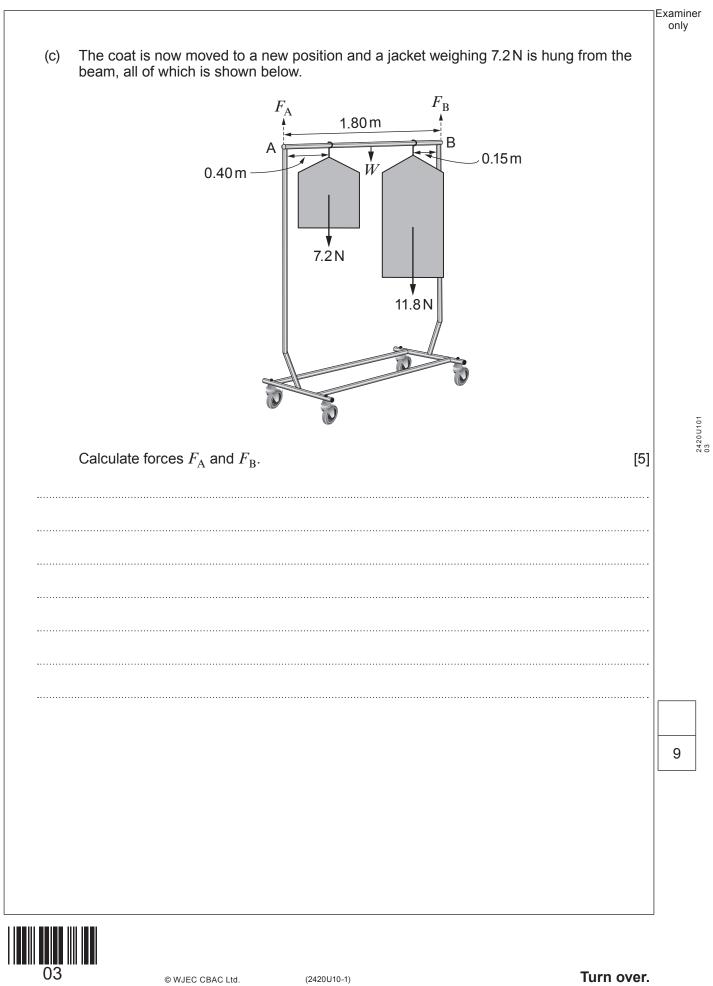
You may use a pencil for graphs and diagrams only.

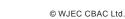
Write your name, centre number and candidate number in the spaces at the top of this page. Answer **all** questions.

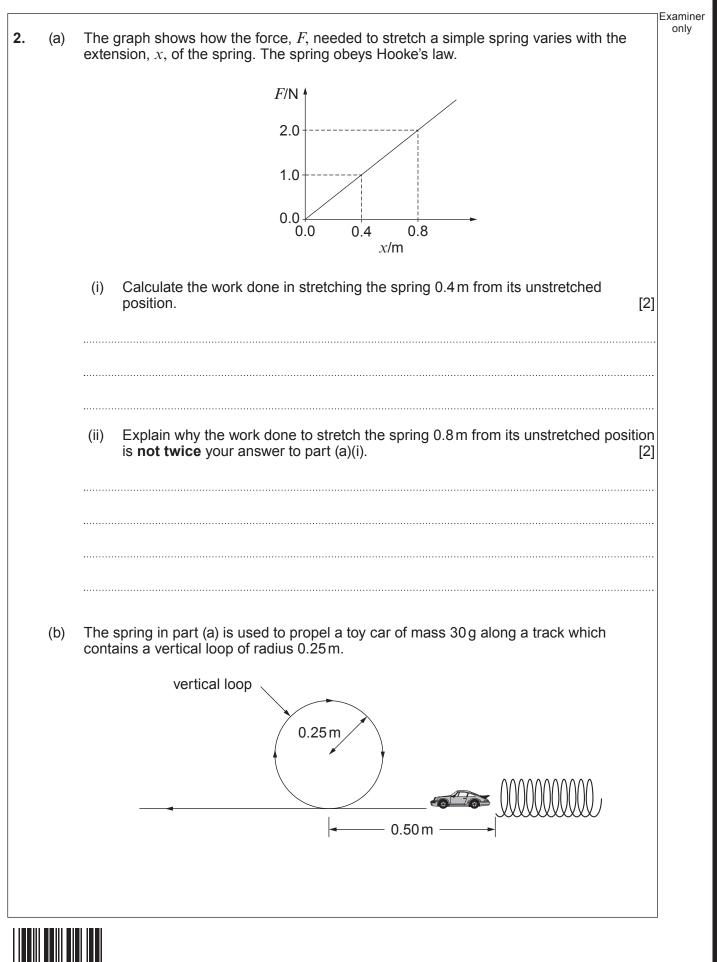
Write your answers in the spaces provided in this booklet. If you run out of space use the additional page at the back of the booklet taking care to number the question(s) correctly.


INFORMATION FOR CANDIDATES

The total number of marks available for this paper is 80.


The number of marks is given in brackets at the end of each question or part-question.


The assessment of the quality of extended response (QER) will take place in question 5(a).



04

2420U101 05

spring, which is then released. Assuming that all of the spring's energy is transferred to the car and that no resistive forces act on it, calculate the speed of the car at the top of the loop. [3] (ii) In reality resistive forces act on the car to the extent that the car loses 5% of its initial energy to frictional forces in moving from the spring to the top of the loop. Calculate the mean resistive force acting on the car during this motion. [3]	 (i)	The spring is compressed by 0.4 m. The car is placed against the end of the	Examiner only
initial energy to frictional forces in moving from the spring to the top of the loop. Calculate the mean resistive force acting on the car during this motion. [3]	()	spring, which is then released. Assuming that all of the spring's energy is transferred to the car and that no resistive forces act on it, calculate the speed of	
initial energy to frictional forces in moving from the spring to the top of the loop. Calculate the mean resistive force acting on the car during this motion. [3]			
initial energy to frictional forces in moving from the spring to the top of the loop. Calculate the mean resistive force acting on the car during this motion. [3]	•••••		
initial energy to frictional forces in moving from the spring to the top of the loop. Calculate the mean resistive force acting on the car during this motion. [3]			
	(ii)	initial energy to frictional forces in moving from the spring to the top of the loop.	
	•••••		
			2420U101
			10

					Exam
3.			ch as the one shown in the picture have ion considers some of the Physics assoc	an increasing number of uses in society. siated with drones.	on
	(a)	(i)	State Newton's third law of motion.		[1]
		(ii)	The drone in the picture has four rotors air. The table describes two vertical for Newton's third law each of these forces other force in each case.		[2]
			Forces acting vertically downwards	Forces acting vertically upwards	
		Gr	avitational force of Earth on drone		
				Force of air on rotors	
	(b)	22 m	drone is able to hover when each rotor p ns ⁻¹ . The momentum given to the air by t th keeps the drone stationary in the air.	produces a downward flow of air of speed he 4 rotors produces an upward force	
		(i)	State the relationship between force an	nd momentum.	[1]
		•••••			
	06		© WJEC CBAC Ltd. (2420U10-1)		

2420U101 07

(ii)	The rate of change of momentum of the air from the 4 rotors can be expressed as:	Examiner only
	$4\pi r^2 \rho v^2$	
	where <i>r</i> is the radius of each of the rotor blades, <i>v</i> is the speed of the air which is set in motion and ρ is the density of the air. Use this expression to show that the weight of the drone is approximately 20 N. [$\rho = 1.3 \text{ kg m}^{-3}$, $r = 5.0 \times 10^{-2} \text{ m}$] [2]	
(iii)	Calculate the vertical acceleration of the drone when v is increased to 24 m s^{-1} . [4]	
		2420U101

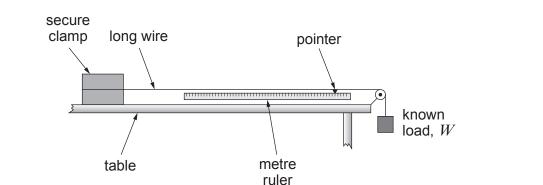
8

	(C)	(i)	Define <i>velocity</i> . [1]	Examiner only
		(ii)	Bill flies the drone from A to B in a time of 32s along the path shown below. The drone is kept at the same height above the ground for the entire flight.	
			A – start	
			View from above, not drawn to scale	
			40 m •	
			90 m	
			B – end $\bigotimes^{\otimes \otimes}$ 30 m	
			Bill's friend Ted believes that, in flying this path (from A to B), the mean speed of the drone is more than twice the magnitude of its mean velocity. Bill disagrees. Use the information given to determine who is correct. [4]	
		······		
		••••••		
		••••••		
	(d)	Dron dron	nes have many applications in today's society. Give one benefit and one risk of [2] are technology.	
-				17
	80		© WJEC CBAC Ltd. (2420U10-1)	

BLANK PAGE

9

PLEASE DO NOT WRITE ON THIS PAGE



2420U101 09

Examiner

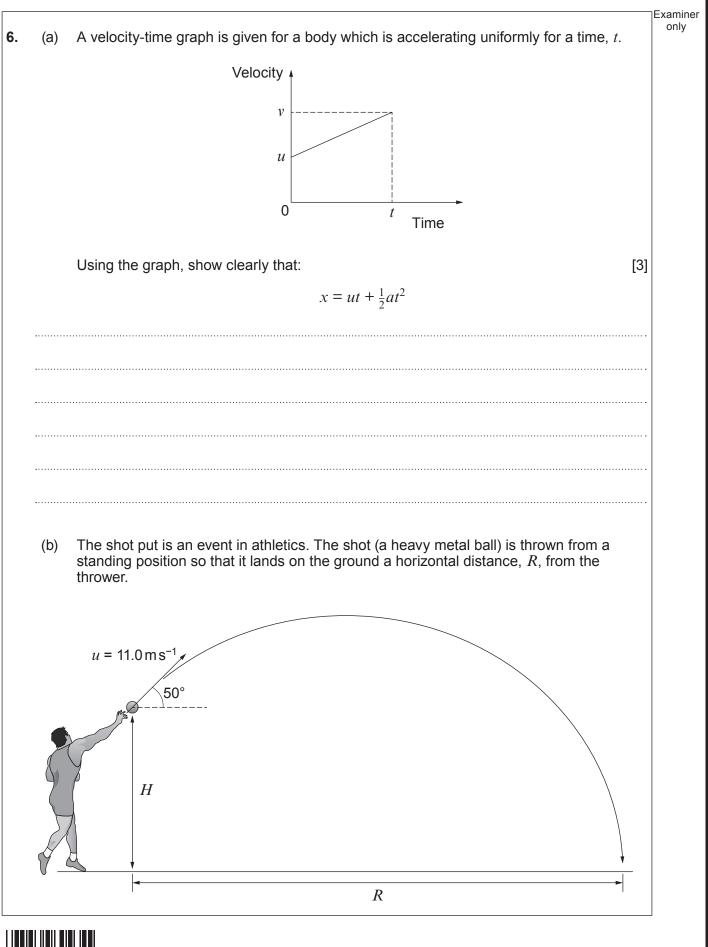
4. Karen is an A level Physics student who has been absent for some of her Physics practical lessons. During her absence, the other students in the class have been using the apparatus below to identify the metal in a wire by finding the Young modulus of the metal and comparing it with known values.

In order to catch up with the other students, Karen decides to use the same apparatus to carry out a quick experiment to find the Young modulus. Her notes are shown in the box below.

- Take single reading of diameter using a micrometer of resolution 0.01 mm. **Diameter = 0.18 mm**
- Use a metre ruler of resolution 1 mm to measure the initial length of the wire. **Initial length = 1.940 m**
- Set up the apparatus and add a mass of 1.0 kg to the end of the wire. Measure extension.
 Extension = 6.0 ± 0.5 mm
- (a) Use Karen's notes to answer the following questions.
 - Calculate the cross-sectional area of the wire in m² and show that the percentage uncertainty in its value is approximately 11%.

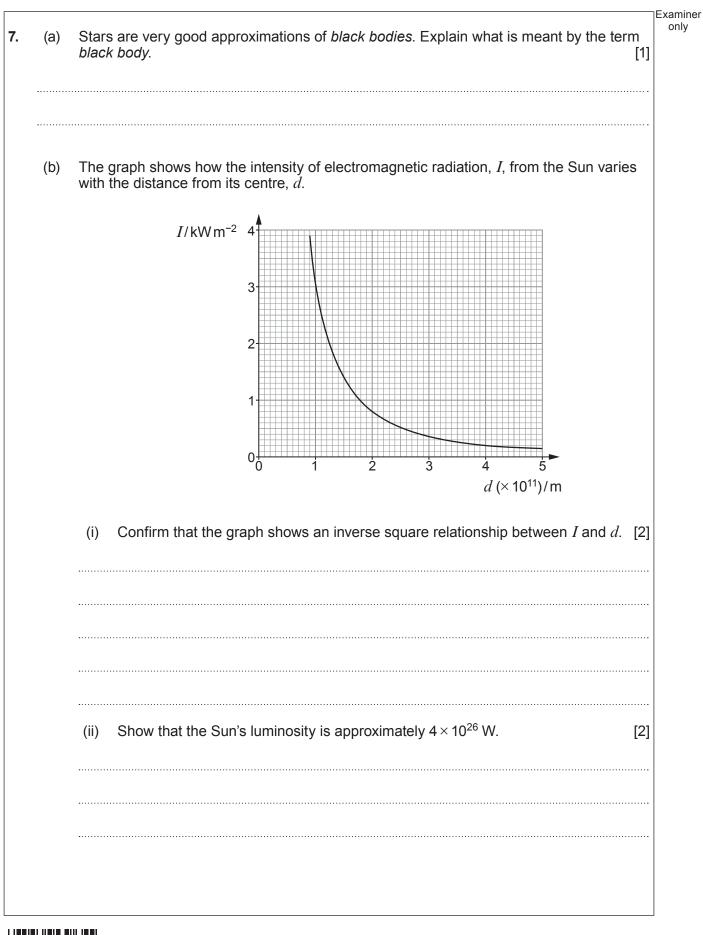
[2]

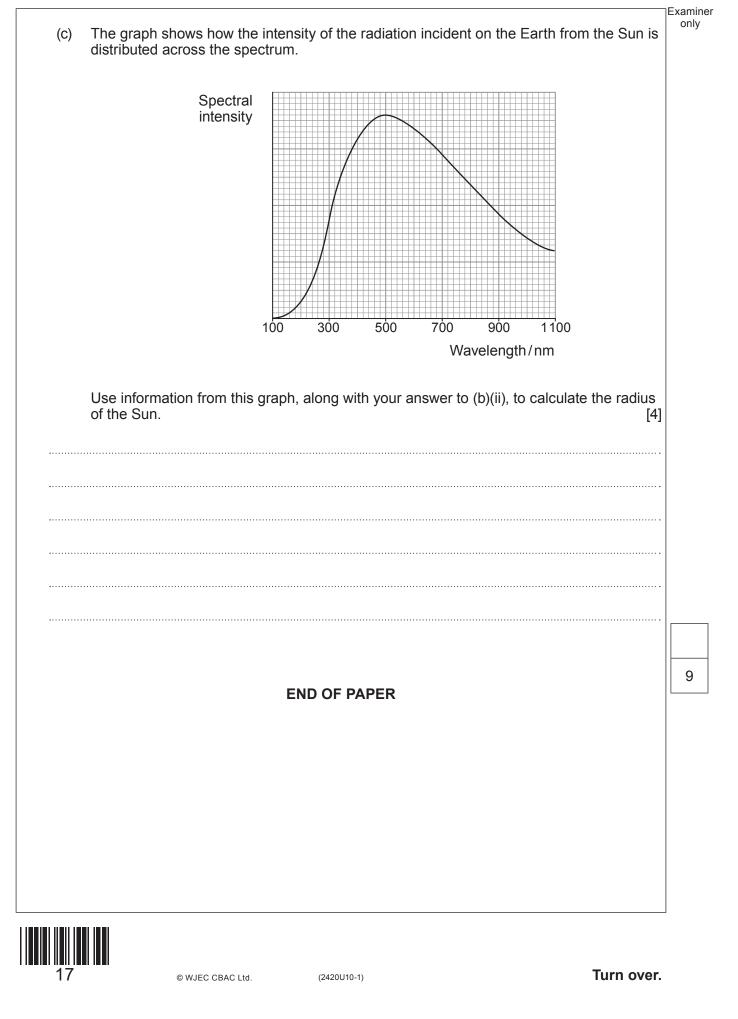
(ii) Show, with an appropriate calculation, that the uncertainty in the length reading can be considered negligible.
 [1]


b)	(i)	Determine the Young modulus of th	ie metal.	[2]
	·····			
	(ii)	this information along with Karen's	e percentage uncertainty in the load notes and your answers to (a) to calc modulus. Give your answer in GPa a gures.	ulate the
C)	The		s values of the wires available to the	students.
c)	The	Metal	Young modulus/GPa	students.
c)	The	Metal	Young modulus/GPa 70	students.
2)	The	Metal aluminium zinc	Young modulus/GPa 70 100	students.
2)	The	Metal aluminium zinc bronze	Young modulus/GPa 70 100 103	students.
3)	The	Metal aluminium zinc	Young modulus/GPa 70 100	students.
2)	Kare	Metal aluminium zinc bronze copper nickel en's friend Jack determined the Young	Young modulus/GPa 70 100 103 117)GPa.
2)	Kare	Metal aluminium zinc bronze copper nickel en's friend Jack determined the Young both use the above table to determined	Young modulus/GPa 70 100 103 117 166 g modulus of the metal to be 126±20)GPa. now Jack's
c)	Kare	Metal aluminium zinc bronze copper nickel en's friend Jack determined the Young both use the above table to determined	Young modulus/GPa 70 100 103 117 166 g modulus of the metal to be 126±20)GPa. now Jack's

(d)	Jack had more time to carry out this experiment than Karen. Suggest differences in the way Jack carried out the experiment (i.e. procedure) and in the way that he analysed his results which led to him reaching a different conclusion to Karen. [3]	Examin only	ər
 		14	
]	

(a)	Hadrons are a group of particles. Write a detailed account of hadrons, including they may be subdivided into other groups of particles, giving examples.	ng how [6 QER]
(b)	A high energy interaction between a proton and a pion is shown below.	
	$p + \pi^- \rightarrow n + \pi^+ + \pi^-$	
	Use conservation laws to show that the interaction is possible.	[3]




14

	Stev the h	e is a shot putter. He throws a shot with a velocity of 11.0 m s ⁻¹ in a direction 50° to norizontal. The shot takes 1.95 s to reach the ground.	0
	(i)	Show that the vertical component of the initial velocity is approximately $8 \mathrm{ms^{-1}}$.	[1]
	(ii)	Hence calculate, H , the vertical distance above the ground from which the shot was thrown.	[3]
	(iii)	Calculate the horizontal distance, <i>R</i> , for this throw.	[2]
(C)	Stev	e makes the following comment to Bryn, a fellow competitor.	
(0)	"Thro	owing the shot at an angle even greater than 50° to the horizontal will increase the contal distance travelled by the shot because the time of flight will increase."	Э
		sider whether or not it would be a good idea for Bryn to follow Steve's advice. ify your answer.	[3]
	·····		
	·····		

Question number	Additional page, if required. Write the question number(s) in the left-hand margin.	Examir only
		1
	······	

BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE

BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE

